When does the norm of a Fourier multiplier dominate its L∞ norm?

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Norm of the L'-fourier Transform on Unimodular Groups

We discuss sharpness in the Hausdorff Young theorem for unimodular groups. First the functions on unimodular locally compact groups for which equality holds in the Hausdorff Young theorem are determined. Then it is shown that the Hausdorff Young theorem is not sharp on any unimodular group which contains the real Une as a direct summand, or any unimodular group which contains an Abelian normal ...

متن کامل

schur multiplier norm of product of matrices

for a ∈ mn, the schur multiplier of a is defined as s a(x) =a ◦ x for all x ∈ mn and the spectral norm of s a can be stateas ∥s a∥ = supx,0 ∥a ∥x ◦x ∥ ∥. the other norm on s a can be definedas ∥s a∥ω = supx,0 ω(ω s( ax (x ) )) = supx,0 ωω (a (x ◦x ) ), where ω(a) standsfor the numerical radius of a. in this paper, we focus on therelation between the norm of schur multiplier of product of matric...

متن کامل

Resolvent Norm Decay Does Not Characterize Norm Continuity

It is the fundamental principle of semigroup theory that the behavior of a strongly continuous semigroup (T (t))t≥0 on a Banach space X and the properties of its generator (A,D(A)), or equivalently the properties of the resolvent function R(λ,A) = (λ − A)−1 (λ ∈ C), should closely correlate. Indeed, the Laplace transform carries the regularity properties of the semigroup to the resolvent functi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the London Mathematical Society

سال: 2018

ISSN: 0024-6115,1460-244X

DOI: 10.1112/plms.12206